PythonTip 03 - Recursion
February 9, 2026

1 Recursion

A recursive algorithm is an algorithm that calls itself. You need a base case so you don’t get stuck
in an infinite loop.

Example: suppose we want to calculate the quantity n! =n(n —1)(n —2)---3-2- 1.

5l =5*4*3*%2%1 =120

We'll use the fact that n!l =n-(n— 1)L

[2]: | # What's wrong with this function?
def factorial(n):
return n * factorial(n-1)

[3]: factorial(3)

RecursionError Traceback (most recent call last)
In[3], line 1
--——> 1 factorial(3)

In[2], line 3, in (n)
2 def factorial(n):

-——=> 3 return n * factorial(n-1)
In[2], line 3, in (n)
2 def factorial(n):

-——=> 3 return n * factorial(n-1)

[.. skipping similar frames: factorial at line 3 (2975 times)]

In[2], line 3, in (n)
2 def factorial(m):
-——->3 return n * factorial(n-1)

RecursionError: maximum recursion depth exceeded

What calls are happening?

[1: # What's wrong with this function?
def factorial(n):
return n * factorial(n-1)

factorial(3)
-> 3 * factorial(2)
-> 3 * 2 x factorial(1l)
-> 3 % 2 % 1 x factorial(0)
-> 3 % 2 x 1 x 0 * factorial(-1)
-> infinite recursion

[11]: # We need a base case!
def factorial(n):
assert n >= 0 and isinstance(n, int), "invalid input into factorial"
if n ==
factorial(1) = 1
return 1
return n * factorial(n-1)

[8]: factorial(b)
[8]: 120

[9]: factorial(3.5)

AssertionError Traceback (most recent call last)
In[9], line 1
--——> 1 factorial(3.5)

In[7], line 3, in (n)
2 def factorial(n):
-—=> 3 assert n >= 0 and isinstance(n, int),
4 if n ==
5 # factorial(l) =1
6 return 1

AssertionError: invalid input into factorial

[1: factorial(5s)

factorial(5)

5 * factorial(4)

5 % (4 * factorial(3))

5% (4 x (3 * factorial(2)))

5% (4 % (3 % (2 * factorial(1))))
5% (4% (3% (2% 1))

[1: factorial(-1)

[1: factorial(0)

[]1:

	Recursion

